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Abstract

Full-waveform inversion (FWI) is a method able to
estimate model parameters in subsurface from seismic
data. The algorithm consists on the minimization of an
objective function that relates observed seismic data
and synthetic data for the estimated model. Thus, the
successful application of FWI depends on the accurate
correspondence between modeled and field data.

Some problems that appear in the application of FWI
to field data are dealt by using alternative functionals
for objective function. The results, obtained by using
synthetic data, show that the definition based on the
least absolute value norm and the cross-correlation
error measure have advantages over least squares
norm, turning the method more robust when facing
noisy data and uncertainties in source signature used
for inversion.

The quasi-Newton formulation of L-BFGS method is
applied to non-quadratic objective functions without
affecting, in practice, the convergence of inversion
scheme.

Introduction

Full-waveform inversion (FWI) is conceived as a procedure
in which synthetic seismic data, modeled using an
estimated model, is matched to field data, fitting all the
observable properties of seismic data: recording time,
amplitude and phase (Tarantola, 1984; Lailly, 1983). The
scheme is guided by an objective function that is minimized
at each iteration and measures, in some sense, the
mismatch between those data vectors.

One of the main challenges of the application of FWI in field
data is the definition of minimization criteria presenting a
stable performance in the presence of amplitude errors in
seismic data (Virieux and Operto, 2009). Least-squares
are commonly used for solving inverse problems. Although
computations based on this formulation are simple, solution
of the problem lacks of robustness, being sensitive to
aleatory outliers in the data set due to the assumption that
all initial uncertainties in the problem can be modeled using
Gaussian distributions (Tarantola, 2005).

Considering alternative formulations for objective functions
defined in terms of data amplitude, the influence of non

coherent noise can be diminished, such as p-norm for error
between data vectors, for p 6= 2, and specifically l1-norm.
This norm is not based on the hypothesis of Gaussian
uncertainties making its results sufficiently insensitive to
outliers affecting data (Tarantola, 2005).

On the other hand, seismic perturbation that acts as
source is generally not well determined and has to be
considered as an unknown in the inversion process. This
way, source term can be estimated and updated in FWI
algorithm, alternating with model parameters (Tarantola,
1984). Otherwise, can be defined objective functions that
turn inversion process independent from source function or
less sensitive to errors in its approximation.

In this work, we review three formulations for FWI objective
function: l2-norm, l1-norm and cross-correlation of data
vectors. We describe their properties and their variation
with errors in data. Through synthetic experiments, in
which we have induced some problems that affect the
application of the algorithm in real data, we show how
alternative approaches for objective function can make the
scheme less sensitive to noisy data and uncertainties in
estimated source signature.

Theory

Modeling problem

Considering an isotropic and homogeneous physical
medium, with constant density, the propagation of an
acoustic oscillatory perturbation is completely describe, in
both space an time, by the two-way wave equation:

1
c(x)2

∂ 2u(x, t)
∂ t2 −∇

2u(x, t) = s(x, t)δ (x−xs), (1)

where u(x, t) represents the seismic wavefield at time t and
for position x = (x,y,z). c(x) is the velocity of propagation
of the acoustic wave. Source term, acting on the position
xs, is denoted by s(x, t) and ∇2 corresponds to Laplacian
operator in Cartesian coordinates. Initial conditions for this
differential problem are usually stated as u(x, t = 0) = 0 and
∂u(x, t = 0)/∂ t = 0. In this work, we use the rapid expansion
method (REM) as extrapolation operator (Pestana and
Stoffa, 2010).

Objective function

The non-linear inversion problem is formulated as the
problem of estimating the wavefield u and the model vector
m that satisfy the forward modeling equation (1), such that
the model is the closest to initial model and the distance
between synthetic data vector dcal(m) and observed data
vector dobs(m) is minimum (Tarantola, 1984). The definition
of distance is established through a functional called
objective function.
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Vector m represents the physical parameters of the discrete
subsurface that describe propagation phenomena and, in
our case, correspond to the values of compressional wave
velocity at position x= (x,y,z). Observed data vector dobs =
dobs(xr, t;xs) contains a set of wavefield measurements
at discrete receiver positions xr associated to a single
seismic source located at xs, registered at discrete time
intervals t. Elements of calculated data vector dcal =
dcal(xr, t;xs) are obtained from the modeled wavefield u(x, t)
on current model by using an operator R that extracts
wavefield values for all discrete time steps, at receiver
positions dcal(xr, t;xs) = Ru(x, t), for each source (Virieux
and Operto, 2009).

Objective function, minimized in FWI iterative process, is
a relation E(m) : M → ℜ that compares registered and
modeled data vectors, for each source-receiver pair in
seismic array and measures, in some sense, the mismatch
between them. Besides l2-norm, we review l1-norm
and correlation between data vectors to define distance
measure in data space.

Least-squares norm

The conventional implementation of waveform inversion is
based on least-squares or l2 norm, which is defined as the
difference in amplitude between predicted and observed
data as objective function (Tarantola, 1984)

El2(m) =
1
2
‖dcal−dobs‖2

2 =
1
2 ∑

s,r

∫ T

0
(dcal−dobs)

2dt, (2)

being T the record length. Summing is performed over
source-receiver pairs s-r in seismic array and total number
of time samples in seismograms.

The approach described by least squares norm
emphasizes mainly on correlating record amplitude,
assuming that the error distribution is Gaussian-like. In the
cases in which this assumption is not satisfied, e.g. when
atypical isolated values affect data amplitude, inversion
process turns less robust (Virieux and Operto, 2009).

Least-absolute norm

Alternatively, absolute value of the difference in amplitude
between synthetic and observed data, or l1-norm, can be
adopted for the definition of E(m) (Brossier et al., 2010)

El1(m) = ‖dcal−dobs‖1 = ∑
s,r

∫ T

0
|dcal−dobs|dt. (3)

This norm is not based on Gaussian statistics in data space
and is considered little sensitive to noise.

Least-absolute norm is not differentiable at dcal − dobs =
0, causing singularity in gradient vector at the minimum
corresponding to an optimal model that explains observed
data completely. Even that this situation is unlikely
in real applications, using l1-norm can derive in some
complications in the near vicinity of global minimum
(Brossier et al., 2010). Some alternative strategies propose
starting the inversion process with an objective function
defined in terms of l1-norm and pass to l2-norm as model
gets close to optimal solution. This approach is treated by
some formulations such that Huber criterion (Huber, 1973)
and hybrid l1/l2 criterion (Bube and Langan, 1997).

Cross-correlation error

A normalized cross-correlation based objective function
can be formulated as a measure of similarity between
modeled and observed data vectors (Zhang et al., 2015;
Klimm, 2013)

Ec(m) =−∑
s

〈dcal,dobs〉
‖dcal‖2‖dobs‖2

=−∑
s

∑
r

∫ T

0
dcaldobsdt(

∑
r

∫ T

0
d2

caldt
)1/2(

∑
r

∫ T

0
d2

obsdt
)1/2

, (4)

where 〈·, ·〉 represents scalar inner product. Considering
the dataset recorded at a single seismic experiment, when
synthetic and registered are co-linear and have the same
orientation in data vector space, the objective function (4)
presents the minimum value, equal to −1. For any other
situation, its value ranges from −1 to 1.

The objective function based on cross-correlation is
sensitive to similarity between synthetic and observed
data, only; it emphasizes mainly on matching the
phase in seismic data, being more flexible to amplitude
correspondence required by l2-norm definition. FWI
formulated using this objective functional is equivalent to
phase inversion in time domain, in which mismatch in
phase between modeled and recorded data is minimized
(Dutta et al., 2014). This approach is useful when synthetic
data amplitude do not match with that of observed data.

Inversion scheme

Conventionally, a local gradient-based iterative scheme is
used for FWI. Current model vector mk is updated via
(Nocedal and Wright, 2006)

mk+1 = mk +αkpk, (5)

where, pk stands for the search vector in the direction of
the minimum of the objective function in the neighborhood
of mk. The step-length αk scales the search direction
before updating the model. Search direction can be
estimated using the approach stated by steepest-descent
method, such that updated model is searched in the
opposite direction given by the gradient vector, i.e., pk =
−∇E(mk), or through quasi-Newton formulations, in which
pk ≈ −H−1

k ∇E(mk), such as L-BFGS algorithm (Nocedal,
1980; Nocedal and Wright, 2006).

Methods of Newton and quasi-Newton classes can be
applied to quadratic or locally quadratic objective functions,
since they require this function is continuous and twice
differentiable for ensuring convergence of the algorithm.
Brossier et al. (2010) showed that, in practice and
even without satisfying this conditions, L-BFGS method
can be applied to inverse problems using objective
functions based on l1-norm, without affecting convergence
significantly. The results of this work indicate that this
conclusion is also valid for the formulation based on cross-
correlation between data vectors.

Gradient vector, required for local-scope inversion
schemes, is conventionally computed as (Tarantola, 1984)

∇E(m) =
2

c(x)3 ∑
s

∫ T

0
λ (x, t)

∂ 2u(x, t)
∂ t2 dt, (6)
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assuming a point-collocation scheme for model
parametrization. It contains the local sensibility information
of objective function with respect to each model parameter.
In the context of adjoint-state method (Plessix, 2006)
u(x, t) corresponds to the state variable, and λ (x, t) to the
adjoint-state variable, obtained by solving the reverse-time
modeling problem

1
c(x)2

∂ 2λ (x, t)
∂ t2 −∇

2
λ (x, t) =

∂E
∂u

(x, t), (7)

with final conditions λ (x, t = T ) = 0 and ∂λ (x, t = T )/∂ t = 0.
The source term in (7) is called the virtual secondary
source. It is a composite source, with an elementary
source at each receiver position, and represents a
form of residuals between synthetic and observed data.
Depending on the formulation of objective function, it is
calculated, for a single seismic source, as (Tarantola, 1984;
Brossier et al., 2010; Zhang et al., 2015)

∂El2
∂u

(x, t) =∑
r
(dcal−dobs)δ (x−xr), (8a)

∂El1
∂u

(x, t) =∑
r

dcal−dobs
|dcal−dobs|

δ (x−xr) (8b)

and

∂Ec

∂u
(x, t) =∑

r

1
‖dcal‖2‖dobs‖2

×

[
〈dcal,dobs〉
‖dcal‖2

2
dcal−dobs

]
δ (x−xr),

(8c)

for the functionals considered in this work. Gradient has
the same form for different objective functions with distinct
secondary source. Thus, objective function and gradient
vector can be computed at the same computational cost,
regardless of the formulation used for E(m) (Brossier et al.,
2010).

Step length αk is computed by quadratic interpolation for
steepest-descent method and assumed as unitary for L-
BFGS approach. Finally, step length is validated using
first Wolfe condition in a backtracking line-search iterative
method (Nocedal and Wright, 2006), for ensuring decrease
in the value of the objective function.

Numerical Results

In order to illustrate the behavior of the formulations for
objective function considered in this work, we designed
an experiment in which observed data vector is formed
by two elements, dobs = (1,1). Parameter values range
from −4 and 6, such that maximum mismatch in data ∆di
is 5. Figure 1 shows the behavior of objective function
with respect to error between calculated and observed data
∆d. Comparison of Figures 1.a and 1.c evidences the
distinction in sensibility of El2 and El1 objective functions.
Being less sensitive to large errors in data space, l1-norm
formulation in potentially more robust when compared with
l2-norm. The singularity at ∆d = 0 in El1 can also be
observed in Figure 1.c. On the other hand, the objective
function defined in terms of correlation of data vectors
(Figure 1.e) presents its minimum value equal to −1 at
all points in which dcal = ndobs, being n a positive scalar.

That set of vectors will be solution of the problem of
minimizing Ec, given that they satisfy the similarity or
parallelism condition imposed by that functional, without
considered the mismatch in amplitude. Contrary, Ec takes
the maximum value for the set of observations for which
dcal =−ndobs.
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Figure 1: Form of objective function and amplitude of
secondary virtual source. The functionals are defined
in terms of the l2-norm (a-b), l1-norm (b-c) and cross-
correlation of data vectors (e-f).

A representation of the amplitude of secondary virtual
sources as a function of data residuals for different
objective function formulations, for the problem described
previously, are shown in Figure 1. For the objective
function based on l2-norm (Figure 1.b), amplitude varies
with magnitude of data mismatch, reducing robustness
of inversion when big and incoherent outliers affect the
data. On the other hand, l1-norm (Figure 1.d) completely
ignores the magnitude of difference in data amplitude when
constructing secondary virtual source, making this criterion
less sensitive to considerable errors in data. In this case,
secondary virtual source corresponds to sign function of
the difference in amplitude between the elements of dcal
and dobs (Brossier et al., 2010). When objective function is
based on cross-correlation (Figure 1.f), secondary virtual
source is scaled accordingly to similarity between observed
and synthetic data vectors. Along main diagonal, in which
dcal = ndobs, for any scalar n, gradient vector is horizontal;
therefore, amplitude of secondary virtual source is null.
Sign of amplitude and direction of data error are related.
Amplitude is predominantly positive in those cases in which
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residuals have similar directions and negative when they
are opposite. This way, model corrections estimated by
gradient vector will tend to make data vectors more similar,
or parallel in data space, with iterations. Values smaller
than −0.5 were clipped for visualization purposes.

Alternative objective functions are applied for estimating
compressional velocity using the synthetic Marmousi
model (Figure 2.a). It consists on a grid of 375× 369
points, with spacing of 8 m in depth and 25 m in horizontal
direction. Observed data were generated using rapid
expansion method, assuming a zero-phase Ricker wavelet
with dominant frequency of 15 Hz as seismic source. All
grid nodes at surface are considered as receivers, for
62 source points equally spaced 150 m. Time sampling
interval is 4 ms, comprising 3.0 s of record length.
Absorbing boundary condition at surface is considered.
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Figure 2: Marmousi model (a), initial model (b) and
estimated model using a conventional multi-frequency
inversion scheme, defining objective function in terms of
l2-norm (c).

Initial model used as input in iterative scheme (Figure 2.b)
corresponds to a smoothed version of true model. In order
to avoid the influence of direct arrival, a 24 m water layer is
include in the upper part of initial model; velocity in this
layer is assumed to be known and is not updated with
iterations. Inversion is performed using a multi-frequency
hierarchical approach (Bunks et al., 1995). Four inversion
stages limited by maximum frequencies equal to 5, 10 , 20
and 30 Hz are considered in the process and 30 iterations
are performed at each stage, totalizing 120 iterations.
Steepest-descent approach is used at first iteration of each
stage. In other case, update direction is computed via
L-BFGS method, considering a maximum of 10 model-
gradient pairs in the algorithm.

In the firs experiment, synthetic noise-free data are used as
input (Figure 3.a) and source signature is assumed to be
known. Estimated model, considering a formulation based
on l2-norm for objective function, is shown in Figure 2.c.
Recovering of model features is satisfactory. Similar results
are obtained for other functionals. The following tests
tend to evaluate the behavior of the described objective
functions in the FWI scheme when facing factors that affect
the application in field data.

Noisy data

In this case, synthetic observed data were contaminated
with random noise in a proportion of 20% (Figure 3.b).
Results of inversion for objective functions described
previously are shown in Figure 4. Even at the presence
of noise in observed data, inversion scheme is able to
recover the most noticeable features in the model. Quality
is reduced at deeper parts where geometry of reflectors is
distorted, being evident in salt intrusions and the reservoir
at antiform structure. Interval velocity inside stratigraphic
layers is also affected by noise.
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Figure 3: Synthetic data used for inversion before (a) and
after (b) adding noise. Seismograms correspond to source
locate at xs = (4675,0)

An useful measure for evaluating the correctness of
estimated model is the normalized root mean square error
(NRMS), given by

NRMS =
1

max(m)−min(m)

√√√√ 1
M

M

∑
i=1

(mi−mest
i )2, (9)

where, M denotes the number of parameters in model
vector, mest corresponds to inverted model, m is the true
model and min(m) and max(m) are the minimum and
maximum values of model parameters, respectively.

NRMS error in estimated model when using free-noise
data is 3.85%, 5.03% and 3.81% for the l2-norm, l1-norm
and correlation mismatch formulations used for objective
function, respectively. When noisy data are used as input,
the corresponding NRMS errors are 6.11%, 6.46% and
6.06%. It represents an increment of 58.7%, 28.4% and
59.1% in the value of NRMS error for each functional
showing that, using an objective function based on the
l1-norm, the relative behavior of inversion process faced
with noise affecting observed data is more robust, when
compared with the case of free-noise data.

Robustness of l1-norm formulation is also observable in the
profile of estimated model shown in Figure 5. Although
all the three formulations achieve an acceptable result
by recovering the main tendency of the values of model
parameters in depth, fitting of l1-norm result to true model
is superior, especially from z = 1850 m. In this figure, m
stands for true model and m0 for initial model.
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Figure 4: Estimated Marmousi model after inversion using
noisy data as entry. Objective functionals are based on l2-
norm (a), l1-norm (b) and cross-correlation of data vectors
(c).
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Figure 5: Velocity profile of estimated model using noisy
data as entry for different objective functionals. Profile is
located at x = 6375 m.

Uncertainties in source signature

In this experiment, observed data were modeled using st(t),
a modified version of zero-phase Ricker wavelet, as source
function. This is computed as st(t) = si(t)e5.0t , where si(t)
corresponds to the conventional form of Ricker wavelet and
which is assumed as the estimated source signature in the
iterative scheme (Figure 6). For visualization purposes,
only 0.5 s of signal length is shown.
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Figure 6: Source function used for modeling observed data
st(t) and estimated signature used for inversion si(t).

Inversion result for objective functions based on l1-norm
and cross-correlation between data vectors are shown in
Figures 7.b and 7.c respectively. In the case of l2-norm, the
scheme does not converge due to errors in the amplitude
in source function used for inversion. We introduced the

coefficient ρ, given by (Wang et al., 2012)

ρ =
〈dcal,dobs〉
‖dcal‖2

2
, (10)

in order to normalize the amplitude of calculated
data vector before computing secondary virtual source.
Therefore, the new form of data residual used for
calculating adjoint-state variable wavefield is ρdcal− dobs.
ρ has the same form as the coefficient applied to
synthetic data vector when computing secondary source
for objective function defined in terms of cross-correlation
(equation 8c). Solution for l2-norm, obtained normalizing
amplitudes in dcal, is shown in Figure 7.a.

Estimated models (Figure 7) make clear the effects of
errors in estimated source signature. Geometry of
structures and velocity values are altered, especially at
deeper parts. Nevertheless, all the three formulations
were able to recover the most noticeable tendencies
in model parameter values, being observable also in a
depth profile (Figure 8). Considering that amplitude of
secondary virtual source for l1-norm is independent from
the magnitude of the difference in amplitude of data
vectors, this approach has a considerable stability faced
with an erroneous approximation of source function. On
the other hand, when cross-correlation based objective
function is used, synthetic traces are scaled accordingly
to its normalized inner product with observed traces,
controlling the amplitude of secondary virtual source in the
computation of adjoint-state wavefield (Dutta et al., 2014).
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Figure 7: Estimated Marmousi model after inversion using
an approximated source signature. Objective functionals
are based on l2-norm, normalizing secondary virtual
source (a), l1-norm (b) and cross-correlation of data
vectors (c).

FWI, when guided by l2-norm objective function, focuses
on data amplitude matching, being sensitive to errors
in source function assumed in iterative scheme, induced
in this experiment. Solution estimated, applying the
normalization of modeled data, is equivalent to that
obtained by using cross-correlation objective function
(Figure 8), in which scaling dcal is performed inherently.

The corresponding NRMS errors are 11.38%, 11.03% and
11.39%, for objective functions defined in terms of l2-norm,
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l1-norm and cross-correlation, respectively. Both cases
(Figures 5 and 8) show an outstanding agreement between
the solutions obtained by using l2-norm and correlation
of data vectors in the formulation of objective function,
reflecting that they are equivalent, at least in the scaled
form of secondary virtual source.
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Figure 8: Velocity profile of estimated model using
an approximated source signature for different objective
functionals. Profile is located at x = 6375 m.

Conclusions

The characteristics and the performance of alternative
formulations for FWI objective function, besides the
conventionally used l2-norm, are studied. Numerical
synthetic examples make clear how the approaches based
on l1-norm and cross-correlation of data vectors are more
stable when facing aleatory noisy affecting data and
seismic source signature is not accurately estimated.

The behavior of objective functions based on l2-norm
and cross-correlation are equivalent, at least in the
normalization that the last one performs on amplitude
of secondary virtual source during gradient computation,
making the scheme more robust when amplitudes of
calculated data do not correspond with amplitude of
observed data.

The successful application of the quasi-Newton L-BFGS
algorithm shows that it can be applied to non-quadratic
objective functions, without affecting the convergence of
iterative scheme significantly. This conclusion had been
stated for l1-norm based objective functions and we extend
to cross-correlation between data vectors.
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